EC465 Algorithms for Parameter and State Estimation

Course Name: 

EC465 Algorithms for Parameter and State Estimation

Programme: 

B.Tech (ECE)

Category: 

Programme Specific Electives (PSE)

Credits (L-T-P): 

(3-1-0) 4

Content: 

Maximum likelihood (ML) estimation, Maximum a posteriori (MAP) estimation, Least squares (LS) estimation, Minimum mean square error (MMSE) estimation, Linear MMSE (LMMSE) estimation. LS estimation for linear and nonlinear systems, modelling stochastic dynamic systems, the Kalman filter for discrete time linear dynamic systems with Gaussian noise. Steady state filters for noisy dynamic systems, adaptive multiple model estimation techniques. Nonlinear estimation techniques, computational aspects of discrete time estimation.

References: 

Y. Bar-Shalom, X. Rong Li and T. Kirubarajan, Estimation with Applications to Tracking and Navigation, John Wiley & Sons, 2001.
F. L. Lewis, Optimal Estimation, John Wiley & Sons, 1986.
R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, John Wiley & Sons, 1992.

Department: 

Electronics and Communication Engineering(ECE)
 

Contact us

Dr. T. Laxminidhi,  Professor and Head, 
Department of E&C, NITK, Surathkal
P. O. Srinivasnagar,
Mangalore - 575 025 Karnataka, India.

  • Hot line: +91-0824-2473046

Connect with us

We're on Social Networks. Follow us & get in touch.