EC460 Neural Networks and Deep Learning
Course Name:
EC460 Neural Networks and Deep Learning
Programme:
Category:
Credits (L-T-P):
Content:
Linear Regression , Logistic regression, Basic neuron structure, Perceptron, error functions, optimization – gradient descent, Multilayer perceptron, transfer function, nonlinearities, learning, backpropagation, function approximations, overfitting, underfitting, Deep networks, challenges, regularization techniques – Norm penalties, early stopping, drop outs, dataset augmentation, bagging and ensemble methods, Convolutional Networks – Convolution, pooling, variants, transfer learning, Sequence Modeling – Recurrent neural networks, Bidirectional RNNs, architectures, LSTM, Application examples – Computer Vision, Speech recognition, NLP.